Assemblers

M00000705
M00001405
M00002705

to

MO0000705+COPY
M00001405+COPY
M00002705+COPY

In this way, exactly the same mechanism can be used for program relocation
and for program linking. There are more examples in the next chapter.

The existence of multiple control sections that can be relocated indepen-
dently of one another makes the handling of expressions slightly more compli-
cated. Qur earlier definitions required that all of the relative terms in an
expression be paired (for an absolute expression), or that all except one be
paired (for a relative expression). We must now extend this restriction to spec-
ify that both terms in each pair must be relative within the same control sec-
tion. The reason is simple—if the two terms represent relative locations in the
same control section, their difference is an absolute value (regardless of where
the control section is located). On the other hand, if they are in different con-
trol sections, their difference has a vaiue that is unpredictable (and therefore
probably useless). For example, the expression

BUFEND-BUFFER

has as its value the length of BUFFER in bytes. On the other hand, the value of
the expression

RDREC-COPY
is the difference in the load addresses of the two control sections. This value
depends on the way run-time storage is allocated; it is unlikely to be of any
use whatsoever to an application program.

When an expression involves external references, the assembler cannot in
general determine whether or not the expression is legal. The pairing of relative
terms to test legality cannot be done without knowing which of the terms occur
in the same control sections, and this is unknown at assembly time. In such a
case, the assembler evaluates all of the terms it can, and combines these to form
an initial expression value. It also generates Modification records so the loader
can finish the evaluation. The loader can then check the expression for errors. We
discuss this further in Chapter 3 when we examine the design of a linking loader.

95

System Software

2.4 ASSEMBLER DESIGN OPTIONS

In this section we discuss two alternatives to the standard two-pass assembler
logic. Section 2.4.1 describes the structure and logic of one-pass assemblers.
These assemblers are used when it is necessary or desirable to avoid a second
pass over the scurce program. Section 2.4.2 introduces the notion of a multi-
pass assembler, an extension to the two-pass logic that allows an assembler to
handle forward references during symbol definition.

2.4.1 One-Pass Assemblers

In this section we examine the structure and design of one-pass assemblers. As
we discussed in Section 2.1, the main problem in trying to assemble a program
in one pass involves forward references. Instruction operands often are sym-
bols that have not yet been defined in the source program. Thus the assembler
does not know what address to insert in the translated instruction.

It is easy to eliminate forward references to data items; we can simply
require that all such areas be defined in the source program before they are
referenced. This restriction is not too severe. The programmer merely places
all storage reservation statements at the start of the program rather than at the
end. Unfortunately, forward references to labels on instructions cannot be
eliminated as easily. The logic of the program often requires a forward jump—
for example, in escaping from a loop after testing some condition. Requiring
that the programmer eliminate all such forward jumps would be much too
restrictive and inconvenient. Therefore, the assembler must make some special
provision for handling forward references. To reduce the size of the problem,
many one-pass assemblers do, however, prohibit (or at least discourage) for-
ward references to data items.

There are two main types of one-pass assembler. One type produces object
code directly in memory for immediate execution; the other type produces the
usual kind of object program for later execution. We use the program in
Fig. 2.18 to illustrate our discussion of both types. This example is the same as
in Fig. 2.2, with all data item definitions placed ahead of the code that refer-
ences them. The generated object code shown in Fig. 2.18 is for reference only;
we will discuss how each type of one-pass assembler would actually generate
the object program required. -

We first discuss one-pass assemblers that generate their object code in
memory for immediate execution. No object program is written out, and no
loader is needed. This kind of load-and-go assembler is useful in a system that
is oriented toward program development and testing. A university computing
system for student use is a typical example of such an environment. In such

[
QLU U DB WWRN N R .
Voo OMOULOUIOUIOLVLAIIEWN RO g

e el el sl el el sl sl
VB IBWWRNNONN R R
olovoUENROUO

155
160
165
170
175
180
195
200
205
206
207
210
215
220
225
230
235
240
245
255

Loc

1000
1000
1003
1006
1009
100C
100F

200F
2012
2015
2018
201B
201E
2021
2024
2027
202A
202D
2030
2033
2036

2039
203a

203D
2040
2043
2046
2049
204C
204F
2052
2055
2058
205B
205E

2061

2062
2065
2068
206B
206E
2071
2074
2077

Source statement

COPY
EOF
THREE
ZERO
RETADR
LENGTH
BUFFER

FIRST
CLOOP

ENDFIL

RDREC
RLOOP
EXIT

OUTBUT

WLOOP

STA
LDA
STA
JSUB
LDL
RSUB

1000
C’EOF’

RETADR
RDREC
LENGTH
ZERO
ENDFIL
WRREC
CLOOP
EOF
BUFFER
THREE
LENGTH
WRREC
RETADR

Object code

454F46
000003
000000

141009
48203D
00100C
281006
302024
482062
302012
001000
0C100F
001003
0c1o0C
482062
081009
4C0000

Assemblers

SUBROUTINE TO READ RECORD INTO BUFFER

BYTE
WORD

X'Fl’
4096

ZERO
ZERO
INPUT
RLOOP
INPUT
ZERO
EXIT
BUFFER, X
MAXLEN
RLOOP
LENGTH

F1
001000

041006
001006
E02039
302043
D82039
281006
30205B
54900F
2C203A
382043
10100C
4C0000

SUBROUTINE TO WRITE RECORD FROM BUFFER

BYTE

LDX
D
JEQ
LDCH
WD
TIX
JLT
RSUB
END

X’'05'

ZERO
OUTPUT
WLOOP
BUFFER, X
OUTPUT
LENGTH
WLOOP

FIRST

05

041006
E02061
302065
50900F
DC2061
2C100C
382065
4C0000

Figure 2.18 Sample program for a one-pass assembler.

97

98

System Software

a system, a large fraction of the total workload consists of program translation.
Because programs are re-assembled nearly every time they are run, efficiency
of the assembly process is an important consideration. A load-and-go assem-
bler avoids the overhead of writing the object program out and reading it back
in. This can be accomplished with either a one- or a two-pass assembler.
However, a one-pass assembler also avoids the overhead of an additional pass
over the source program.

Because the object program is produced in memory rather than being writ-
ten out on secondary storage, the handling of forward references becomes less
difficult. The assembler simply generates object code instructions as it scans
the source program. If an instruction operand is a symbol that has not yet been
defined, the operand address is omitted when the instruction is assembled.
The symbol used as an operand is entered into the symbol table (unless such
an entry is already present). This entry is flagged to indicate that the symbol is
undefined. The address of the operand field of the instruction that refers to the
undefined symbol is added to a list of forward references associated with the
symbol table entry. When the definition for a symbol is encountered, the for-
ward reference list for that symbol is scanned (if one exists), and the proper
address is inserted into any instructions previously generated.

An example should help to make this process clear. Figure 2.19(a) shows
the object code and symbol table entries as they would be after scanning line 40
of the program in Fig. 2.18. The first forward reference occurred on line 15.
Since the operand (RDREC) was not yet defined, the instruction was assem-
bled with no value assigned as the operand address (denoted in the figure
by ----). RDREC was then entered into SYMTAB as an undefined symbol (indi-
cated by *); the address of the operand field of the instruction (2013) was
inserted in a list associated with RDREC. A similar process was followed with
the instructions on lines 30 and 35.

Now consider Fig. 2.19(b), which corresponds to the situation after scan-
ning line 160. Some of the forward references have been resolved by this time,
while others have been added. When the symbol ENDFIL was defined (line 45),
the assembler placed its value in the SYMTAB entry; it then inserted this value
into the instruction operand field (zt address 201C) as directed by the forward
reference list. From this point on, any references to ENDFIL would not be for-
ward references, and would not be entered into a list. Similarly, the definition
of RDREC (line 125) resulted in the filling in of the operand address at location
2013. Meanwhile, two new forward references have been added: to WRREC
(line 65) and EXIT (line 155). You should continue tracing through this process
to the end of the program to show yourself that all of the forward references
will be filled in properly. At the end of the program, any SYMTAB entries that
are still marked with * indicate undefined symbols. These should be flagged by
the assembler as errors. :

Assemblers

Memory
address Contents Symbol Value
1000 454F4600 00030000 00XXXXXX XXXXXXXX LENGTH | 100C
10.10 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX RDREC | * | o 2013
: THREE | 1003
2000 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXX14 ZERO 1006 i
2010 100948— —00100C 28100630 -———48—
2020 ~-3C2012 WRREC | * | o= 201F
: EOF |1000
* ENDFIL | * | o= 201C
RETADR | 1008
BUFFER |100F
CLOOP [2012
FIRST 200F

Figure 2.19(a) Object code in memory and symbol table entries for
the program in Fig. 2.18 after scanning line 40.

When the end of the program is encountered, the assembly is complete. If
no errors have occurred, the assembler searches SYMTAB for the value of the
symbol named in the END statement (in this case, FIRST) and jumps to this
location to begin execution of the assembled program. The algorithm for one
pass assembler is shown in Fig. 2.19(c).

We :used an absolute program as our example because, for a load-and-go
assembler, the actual address must be known at assembly time. Of course it is
not necessary for this address to be specified by the programmer; it might be
assigned by the system. In either case, however, the assembly process would
be the same—the location counter would be initialized to the actual program
starting address.

One-pass assemblers that produce object programs as output are often
used on systems where external working-storage devices (for the intermediate
file between the two passes) are not available. Such assemblers may also be
useful when the external storage is slow or is inconvenient to use for some
other reason. One-pass assemblers that produce object programs follow a
slightly different procedure from that previously described. Forward refer-
ences are entered into lists as before. Now, however, when the definition of a
symbol is encountered, instructions that made forward references to that

100 System Software
Memory Symbol Value
address Contents LENGTH | 100C
1000 454F4600 00030000 O0OXXXXXX XXXXXXXX RDREC | 203D
1010 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
. THREE | 1003
[]
. ZERO 1006
2000 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXx14
2010 10094820 3D00100C 28100630 202448— | WHREC | * | &4—P 201F 2031
2020 --3C2012 0010000C 100F001C 030C100C EOF 1000
2030 48-—-08 10094C00 O0OFl0010 00041006
2040 001006E0 20393020 43D82039 28100630 ENDFIL | 2024
2050 ——5490 OF
. RETADR | 1009
. BUFFER | 100F
cLooP | 2012
FIRST 200F
MAXLEN | 203A
INPUT 2039
EXIT *I'- 2050 | 0
RLOOP | 2043

Figure 2.19(b) Object code in memory and symbol table entries for
the program in Fig. 2.18 after scanning line 160.

symbol may no longer be available in memory for modification. In general,
they will already have been written out as part of a Text record in the object
program. In this case the assembler must generate another Text record with
the correct operand address. When the program is loaded, this address will be
inserted into the instruction by the action of the loader.

Figure 2.20 illustrates this process. The second Text record contains the
object code generated from lines 10 through 40 in Fig. 2.18. The operand
addresses for the instructions on lines 15, 30, and 35 have been generated as
0000. When the definition of ENDFIL on line 45 is encountered, the assem-
bler generates the third Text record. This record specifies that the value 2024
(the address of ENDFIL) is to be loaded at location 201C (the operand
address field of the JEQ instruction on line 30). When the program is loaded,
therefore, the value 2024 will replace the 0000 previously loaded. The other
forward references in the program are handled in exactly the same way.
In effect, the services of the loader are being used to complete forward

Assemblers

begin
read first input line
i€ OPCODE = 'START' then
begin
save #[OPERAND] as starting address
initialize LOCCTR as starting address
read next input line
end {if START}
else
initialize LOCCTR to O
while OPCODE # ‘END’ do
begin
1f there is not a comment line then
begin
if there is a symbol in the LABEL field then
begin
search SYMTAB for LABEL
if found then
begin
if symbol value as null
set symbol value as LOCCTR and search
the linked list with the corresponding
operand
PTR addresses and generate operand
addresses as corresponding symbol
values
set symbol value as LOCCTR in symbol
table and delete the linked list
end
else
insert (LABEL, LOCCTR) into SYMTAB
end
search OPTAB for OPCODE
if found then
begin
search SYMTAB for OPERAND address
if found then
if symbol value not equal to null then
store symbol value as OPERAND address
else
insert at the end of the linked list
with a node with address as LOCCTR
else
insert (symbol name, null)

Figure 2.19(c) Algorithm for One pass assembler.

101

102

System Software

add 3 to LOCCTR
end
else if OPCODE = ‘WORD’ then
add 3 to LOCCTR & convert comment to
object code
else if OPCODE = ‘RESW’ then
add 3 #[OPERAND] to LOCCTR
else if OPCODE = ‘RESB’ then
add #[OPERAND] to LOCCTR
else if OPCODE = ‘BYTE’ then
begin
find length of constant in bytas
add length to LOCCTR
convert constant to object code
end .
if object code will not fit into current
text record then
begin
write text record to object program
initialize new text record
end
add object code to Text record
end
write listing line
read next input line
end
write last Text record to object program
write End record to object program
write last listing line
end {Pass 1}

Figure 2.19(c) (contd)

references that could not be handled by the assembler. Of course, the object
program records must be kept in their original order when they are pre-

sented to the loader.

In this section we considered only simple one-pass assemblers that
handled absolute programs. Instruction operands were assumed to be
single symbols, and the assembled instructions contained the actual (not
relative) addresses of the operands. More advanced assembler features such as
literals were not allowed. You are encouraged to think about ways of remov-
ing some of these restrictions (see the Exercises for this section for some

suggestions).

Assemblers

ﬁFOPY .y0100990107A
qpo1ooqu@54p4§poooo§pooooo
%@02005&;&4lOO%&BOOOgPO1009@8100@@0000q&80009§02012

29020199%3024
;@0202%&%POIOOQPCIOOEQOIOO%@CI00968000998100%&00009?5901000
00201%9%@03D
00203%&%@41009@0100@@0203%@0204;P8203%@8100@@00009@&9003@02035@82043
002059@%@053

00205”@%&01009&0000995

002015P%@062

3902035@%@062
390206%@%@41009@0206590206%?0900§PC2065@01009@8206%&C0000

EQ0200F

R

>

>H

=

Figure 2.20 Object program from one-pass assembler for program in
Fig. 2.18.

2.4.2 Multi-Pass Assemblers

In our discussion of the EQU assembler directive, we required that any
symbol used on the right-hand side (i.e., in the expression giving the value of
the new symbol) be defined previously in the source program. A similar
requirément was imposed for ORG. As a matter of fact, such a restriction is
normally applied to all assembler directives that (directly or indirectly) define
symbols.

The reason for this is the symbol definition process in a two-pass assembler.
Consider, for example, the sequence

ALPHA EQU BETA
BETA EQU DELTA
DELTA RESW 1

The symbol BETA cannot be assigned a value when it is encountered during
the first pass because DELTA has not yet been defined. As a result, ALPHA
cannot be evaluated during the second pass. This means that any assembler
that makes only two sequential passes over the source program cannot resolve
such a:sequence of definitions.

Restrictions such as prohibiting forward references in symbol definition
are not normally a serious inconvenience for the programmer. As a matter of
fact, such forward references tend to create difficulty for a person reading the
program as well as for the assembler. Nevertheless, some assemblers are
designed to eliminate the need for such restrictions. The general solution is a

103

104

System Software

multi-pass assembler that can make as many passes as are needed to process
the definitions of symbols. It is not necessary for such an assembler to make
more than two passes over the entire program. Instead, the portions of the
program that involve forward references in symbol definition are saved dur-
ing Pass 1. Additional passes through these stored definitions are made as the

- assembly progresses. This process is followed by a normal Pass 2.

There are several ways of accomplishing the task outlined above. The
method we describe involves storing those symbol definitions that involve
forward references in the symbol table. This table also indicates which sym-
bols are dependent on the values of others, to facilitate symbol evaluation.

Figure 2.21(a) shows a sequence of symbol-defining statements that
involve forward references; the other parts of the source program are not
important for our discussion, and have been omitted. The following parts of
Fig. 2.21 show information in the symbol table as it might appear after pro-
cessing each of the source statements shown.

Figure 2.21(b) displays symbol table entries resulting from Pass 1 process-
ing of the statement \

HALFSZ EQU MAXLEN/2
MAXLEN has not yet been defined, so no value for HALFSZ can be com-
puted. The defining expression for HALFSZ is stored in the symbol table in
place of its value. The entry &1 indicates that one symbol in the defining
expression is undefined. In an actual implementation, of course, this definition
might be stored at some other location. SYMTAB would then simply contain a
pointer to the defining expression. The symbol MAXLEN is also entered in the
symbol table, with the flag * identifying it as undefined. Associated with this
entry is a list of the symbols whose values depend on MAXLEN (in this case,
HALFSZ). (Note the similarity to the way we handled forward references in a
one-pass assembler.)

The same procedure is followed with the definition of MAXLEN [see
Fig. 2.21(c)]. In this case there are two undefined symbols involved in the defi-
nition: BUFEND and BUFFER. Both of these are entered into SYMTAB with
lists indicating the dependence of MAXLEN upon them. Similarly, the defini-
tion of PREVBT causes this symbol to be added to the list of dependencies on
BUFFER [as shown in Fig. 2.21(d)].

So far we have simply been saving symbol definitions for later processing.
The definition of BUFFER on line 4 lets us begin evaluation of some of these
symbols. Let us assume that when line 4 is read, the location counter contains
the hexadecimal value 1034. This address is stored as the value of BUFFER. The
assembler then examines the list of symbols that are dependent on BUFFER.
The symbol table entry for the first symbol in this list (MAXLEN) shows that it

Assemblers

depends on two currently undefined symbols; therefore, MAXLEN cannot be
evaluated immediately. Instead, the &2 is changed to &1 to show that only one
symbol in the definition (BUFEND) remains undefined. The other symbol in
the list (PREVBT) can be evaluafed because it depends only on BUFFER. The
value of the defining expression for PREVBT is calculated and stored in
SYMTAB. The result is shown in Fig. 2.21(e).

The remainder of the processing follows the same pattern. When BUFEND
is defined by line 5, its value is entered into the symbol table. The list associ-
ated with BUFEND then directs the assembler to evaluate MAXLEN, and

1 HALFSZ EQU MAXLEN/2
2 MAXLEN EQU BUFEND-BUFFER
3 PREVBT EQU BUFFER-1

4 BUFFER RESB 4096

5 BUFEND EQU * .
(a)
HALFSZ |&1| MAXLEN/2 0
MAXLEN | # o+—p| HALFSZ | 0
(b)

Figure 2.21 Example of multi-pass assembler operation.

105

106 System Software

BUFEND | * o MAXLEN

HALFSZ |&1| MAXLEN/2 0

MAXLEN |&2| BUFEND-BUFFER - HALFSZ

BUFFER | * o MAXLEN
(c)

BUFEND | * L MAXLEN

HALFSZ |&1| MAXLEN/2 0

PREVBT |&1|BUFFER-1 0

MAXLEN |&2| BUFEND-BUFFER o HALFSZ

BUFFER | * > MAXLEN

PREVBT

Figure 2.21 (cont'd)

(d

BUFEND

MAXLEN

HALFSZ

&

pary

MAXLEN/2

PREVBT

1033

MAXLEN

&1

BUFEND-BUFFER

HALFSZ

BUFFER

1034

(e)

BUFEND

2034

HALFSZ

800

PREVBT

1033

MAXLEN

1000

BUFFER

1034

Figure 2.21 (cont'd)

()

Assemblers

107

108

System Software

entering a value for MAXLEN causes the evaluation of the symbol in its list
(HALFSZ). As shown in Fig. 2.21(f), this completes the symbol definition
process. If any symbols remained undefined at the end of the program, the
assembler would flag them as errors.

The procedure we have just described applies to symbols defined by assem-
bler directives like EQU. You are encouraged to think about how this method
could be modified to allow forward references in ORG statements as well.

2.5 IMPLEMENTATION EXAMPLES

We discussed many of the most common assembler features in the preceding
sections. However, the variety of machines and assembler languages is very
great. Most assemblers have at least some unusual features that are related to
machine architecture or language design. In this section we discuss three
examples of assemblers for real machines. We are obviously unable to give a
full description of any of these in the space available. Instead we focus on
some of the most interesting or unusual features of each assembler. We are also
particularly interested in areas where the assembler design differs from the
basic algorithm and data structures described earlier.

The assembler examples we discuss are for the Pentium (x86), SPARC, and
PowerPC architectures. You may want to review the descriptions of these
architectures in Chapter 1 before proceeding.

2.5.1 MASM Assembler

This section describes some of the features of the Microsoft MASM assembler
for Pentium and other x86 systems. Further information about MASM can be
found in Barkakati (1992).

As we discussed in Section 1.4.2, the programmer of an x86 system views
memory as a collection of segments. An MASM assembler language program
is written as a collection of segments. Each segment is defined as belonging to
a particular class, corresponding to its contents. Commonly used classes are
CODE, DATA, CONST, and STACK.

During program execution, segments are addressed via the x86 segment
registers. In most cases, code segments are addressed using register TS, and
stack segments are addressed using register SS. These segment registers are
automatically set by the system loader when a program is loaded for execu-
tion. Register CS is set to indicate the segment that contains the starting label
specified in the END statement of the program. Register SS is set to indicate
the last stack segment processed by the loader.

Assemblers

Data segments (including constant segments) are normally addressed
using DS, ES, FS, or GS. The segment register to be used can be specified
explicitly by the programmer (by writing it as part of the assembler language
instruction). If the programmer does not specify a segment register, one is
selected by the assembler.

By default, the assembler assumes that all references to data segments use
register DS. This assumption can be changed by the assembler directive
ASSUME. For example, the directive

ASSUME ES:DATASEG2

tells the assembler to assume that register ES indicates the segment
DATASEG2. Thus, any references to labels that are defined in DATASEG2 will
be assembled using register ES. It is also possible to collect several segments
into a group and use ASSUME to associate a segment register with the group.

Registers DS, ES, FS and GS must be loaded by the program before they
can be used to address data segments. For example, the instructions

MoV AX, DATASEG2
MOV ES,AX

would set ES to indicate the data segment DATASEG2. Notice the similarities
between the ASSUME directive and the BASE directive we discussed for
SIC/XE. The BASE directive tells a SIC/XE assembler the contents of register B;
the programmer must provide executable instructions to load this value into the
register. Likewise, ASSUME tells MASM the contents of a segment register; the
programmer must provide instructions to load this register when the program is
executed.

Jump instructions are assembled in two different ways, depending on
whether the target of the jump is in the same code segment as the jump instruc-
tion. A near jump is a jump to a target in the same code segment; a far jump is a
jump to a target in a different code segment. A near jump is assembled using the
current code segment register CS. A far jump must be assembled using a differ-
ent segment register, which is specified in an instruction prefix. The assembled
machine instruction for a near jump occupies 2 or 3 bytes (depending upon
whether the jump address is within 128 bytes of the current instruction). The
assembled instruction for a far jump requires 5 bytes.

Forward references to labels in the source program can cause problems.
For example, consider a jump instruction like

JMP TARGET

If the definition of the label TARGET occurs in the program before the JMP
instruction, the assembler can tell whether this is a near jump or a far jump.

109

110

System Software

However, if this is a forward reference to TARGET, the assembler does not
know how many bytes to reserve for the instruction.

By default, MASM assumes that a forward jump is a near jump. If the tar-
get of the jump is in another code segment, the programmer must warn the
assembler by writing

JMP FAR PTR TARGET

If the jump address is within 128 bytes of the current instruction, the program-
mer can specify the shorter (2-byte) near jump by writing

JMP SHORT TARGET

If the JMP to TARGET is a far jump, and the programmer does not specify FAR
PTR, a problem occurs. During Pass 1, the assembler reserves 3 bytes for the
jump instruction. However, the actual assembled instruction requires 5 bytes.
In the earlier versions of MASM, this caused an assembly error (called a phase
error). In later versions of MASM, the assembler can repeat Pass 1 to generate
the correct location counter values.

Notice the similarities between the far jump and the forward references in
SIC/XE that require the use of extended format instructions.

There are also many other situations in which the length of an assembled
instruction depends on the operands that are used. For example, the operands
of an ADD instruction may be registers, memory locations, or immediate
operands. Immediate operands may occupy from 1 to 4 bytes in the instruc-
tion. An operand that specifies a memory location may take varying amounts
of space in the instruction, depending upon the location of the operand.

This means that Pass 1 of an x86 assembler must be considerably more com-
plex than Pass 1 of a SIC assembler. The first pass of the x86 assembler must
analyze the operands of an instruction, in addition to looking at the operation
code. The operation code table must also be more complicated, since it must
contain information on which addressing modes are valid for each operand.

Segments in an MASM source program can be written in more than one
part. If a SEGMENT directive specifies the same name as a previously defined
segment, it is considered to be a continuation of that segment. All of the parts
of a segment are gathered together by the assembly process. Thus, segments
can perform a similar function to the program blocks we discussed for SIC /XE.

References between segments that are assembled together are automati-
cally handled by the assembler. External references between separately assem-
bled modules must be handled by the linker. The MASM directive PUBLIC
has approximately the same function as the SIC/XE directive EXTDEF. The
MAGSM directive EXTRN has approximately the same function as EXTREF. We
will consider the action of the linker in more detail in the next chapter.

Assemblers

The object program from MASM may be in several different formats, to
allow easy and efficient execution of the program in a variety of operating
environments. MASM can also produce an instruction timing listing that
shows the number of clock cycles required to execute each machine instruc-
tion. This allows the programmer to exercise a great deal of control in optimizing
timing-critical sections of code.

2.5.2 'SPARC Assembler

This section describes some of the features of the SunOS SPARC assembler.
Further information about this assembler can be found in Sun Microsystems
(19%4a).

A SPARC assembler language program is divided into units called sections.
The assembler provides a set of predefined section names. Some examples of
these are

.TEXT Executable instructions
DATA Initialized read /write data
.RODATA Read-only data

.BSS Uninitialized data areas

I is also possible to define other sections, specifying section attributes such as
“executable” and “writeable.”

The programmer can switch between sections at any time in the source
program by using assembler directives. The assembler maintains a separate
location counter for each named section. Each time the assembler switches to a
different section, it also switches to the location counter associated with that
section. In this way, sections are similar to the program blocks we discussed
for SIC. However, references between different sections are resolved by the
linker, not by the assembler.

By ‘default, symbols used in a source program are assumed to be local to
that program. (However, a section may freely refer to local symbols defined in
another section of the same program.) Symbols that are used in linking sepa-
rately assembled programs may be declared to be either global or weak. A
global symbol is either a symbol that is defined in the program and made
accessible to others, or a symbol that is referenced in a program and defined
externally. (Notice that this combines the functions of the EXTDEF and
EXTREF directives we discussed for SIC.) A weak symbol is similar to a global
symbol. However, the definition of a weak symbol may be overridden by a
global symbol with the same name. Also, weak symbols may remain unde-
fined when the program is linked, without causing an error. '

111

112

System Software

The object file written by the SPARC assembler contains translated versions
of the segments of the program and a list of relocation and linking operations
that need to be performed. References between different segments of the same
program are resolved when the program is linked. The object program also
includes a symbol table that describes the symbols used during relocation and
linking (global symbols, weak symbols, and section names).

SPARC assembler language has an unusual feature that is directly related
to the machine architecture. As we discussed in Section 1.5.1, SPARC branch
instructions (including subroutine calls) are delayed branches. The instruction
immediately following a branch instruction is actually executed before the
branch is taken. For example, in the instruction sequence

cMP $L0, 10
BLE LOOP
ADD %L2, $L3, %L4

the ADD instruction is executed before the conditional branch BLE. This ADD
instruction is said to be in the delay slot of the branch; it is executed regardless
of whether or not the conditional branch is taken. '

To simplify debugging, SPARC assembly language programmers often place
NOP (no-operation) instructions in delay slots when a program is written. The
code is later rearranged to move useful instructions into the delay slots. For
example, the instruction sequence illustrated above might originally have been

LOOP: .

ADD %L2, %L3, %14

cMP L0, 10
BLE LOOP
NOP

Moving the ADD instruction into the delay slot would produce the version dis-
cussed earlier. (Notice that the CMP instruction could not be moved into the
delay slot, because it sets the condition codes that must be tested by the BLE.)

However, there is another possibility. Suppose that the original version of
the loop had been

LOOP: ADD $L2, %L3, %14
CMP $L0, 10
BLE LOOP

Assemblers

Now the ADD instruction is logically the first instruction in the loop. It could
still be moved into the delay slot, as previously described. However, this
would create a problem. On the last execution of the loop, the ADD instruction
(which is the beginning of the next loop iteration) should not be executed.

The SPARC architecture defines a solution to this problem. A conditional
branch instruction like BLE can be annulled. If a branch is annulled, the instruc-
tion in its delay slot is executed if the branch is taken, but not executed if the
branch is not taken. Annulled branches are indicated in SPARC assembler
language by writing “,A” following the operation code. Thus the loop just dis-
cussed could be rewritten as

LOOP: .
CMP $L0, 10
BLE,A LOOP
ADD %L2, %L3, %14

The SPARC assembler provides warning messages to alert the programmer to
possible problems with delay slots. For example, a label on an instruction in a
delay slot usually indicates an error. A segment that ends with a branch
instruction (with nothing in the delay slot) is also likely to be incorrect. Before
the branch is executed, the machine will attempt to execute whatever happens
to be stored at the memory location immediately following the branch.

2.5.3 AIX Assembler

This section describes some of the features of the AIX assembler for PowerPC
and other similar systems. Further information about this assembler can be
found in IBM (1994b).

The AIX assembler includes support for various models of PowerPC
microprocessors, as well as earlier machines that implement the original
POWER architecture. The programmer can declare which architecture is being
used with the assembler directive .MACHINE. The assembler automatically
checks for POWER or PowerPC instructions that are not valid for the specified
environment. When the object program is generated, the assembler includes a
flag that indicates which processors are capable of running the program. This
flag depends on which instructions are actually used in the program, not on
the MACHINE directive. For example, a PowerP(” program that contains only
instructions that are also in the original POWER architecture would be exe-
cutable on either type of system.

As we discussed in Section 1.5.2, PowerPC load and store instructions use
a base register and a displacement value to specify an address in memory. Any

113

114

System Software

of the general-purpose registers (except GPR0) can be used as a base register.
Decisions about which registers to use in this way are left to the programmer.
In a long program, it is not unusual to have several different base registers in
use at the same time. The programmer specifies which registers are available
for use as base registers, and the contents of these registers, with the .USING
assembler directive. This is similar in function to the BASE statement in our
SIC/XE assembler language. Thus the statements

.USING LENGTH, 1
.USING BUFFER, 4

would identify GPR1 and GPR4 as base registers. GPR1 would be assumed to
contain the address of LENGTH, and GPR4 would be assumed to contain the
address of BUFFER. As with SIC/XE, the programmer must provide instructions
to place these values into the registers at execution time. Additional .USING
statements may appear at any point in the program. If a base register is to be
used later for some other purpose, the programmer indicates with the .DROP
statement that this register is no longer available for addressing purposes.

This additional flexibility in register usage means more work for the assem-
bler. A base register table is used to remember which of the general-purpose regis-
ters are currently available as base registers, and what base addresses they
contain. Processing a .USING statement causes an entry to be made in this table
(or an existing entry to be modified); processing a .DRCF statement removes the
corresponding table entry. For each instruction whose operand 1s an address in
memory, the assembler scans the table to find a base register that can be used to
address that operand. If more than one register can be used, the assembler
selects the base register that results in the smallest signed displacement. If no
suitable base register is available, the instruction cannot be assembled. The
process of displacement calculation is the same as we described for SIC/XE.

The AIX assembler language also allows the programmer to write base
registers and displacements explicitly in the source program. For example, the
instruction

L 2,8(4)

specifies an operand address that is 8 bytes past the address contained in GPR4.
This form of addressing may be useful when some register is known to contain
the starting address of a table or data record, and the programmer wishes to
refer to a fixed location within that table or record. The assembler simply inserts
the specified values into the object code instruction: in this case base register
GPR4 and displacement 8. The base register table is not involved, and the regis-
ter used in this way need not have appeared in a .USING statement.

